Novel Direct Georeferencing-Based Method for Accurate Water Surface Mosaicking with UAS multispectral Imagery

Dr. Alejandro Román

Institute of Marine Sciences of Andalusia (ICMAN-CSIC), a.roman@csic.es

Introduction

- Unoccupied aircraft systems (UAS or drones) enable comprehensive observation of marine systems with high spatial and temporal resolutions.
- Some advantages of UAS data acquisition:
 - Not affected by cloud coverage.
 - Avoids atmospheric corrections.
 - Not facing land adjacency effects.
- Some challenges and limitations.

Challenges

individually based on their positioning information and **merge** them into a final mosaic that includes these water surfaces

R_{rs} can be retrieved from UAS-based multispectral data $R_{rs}(\theta, \phi, \lambda) = \frac{L_w(\theta, \phi, \lambda)}{E_d(\lambda)}$ $R_{UAS}(\theta, \phi, \lambda) = \frac{L_T(\theta, \phi, \lambda)}{E_d(\lambda)}$ Meed to account for surface reflected light (*Lsr*)

 $L_T(\theta, \Phi, \lambda) = L_w(\theta, \Phi, \lambda) + L_{SR}(\theta, \Phi, \lambda) \qquad L_{SR}(\theta, \Phi, \lambda) = R_F(\theta, \Phi, \lambda) * L_{sky}(\theta, \Phi, \lambda)$

Removal of L_{SR}

Above water R_{rs} calculation

$$R_{rs}(\theta, \Phi, \lambda) = R_{UAS}(\theta, \Phi, \lambda) - \frac{L_{sky}(\theta, \Phi, \lambda) * R_F(\theta, \Phi, \lambda)}{E_D(\lambda)}$$

Main goals

Generate an **open-source algorithm** that works with high-resolution **UAS multispectral data** to generate a final product that could be applied to resolve coastal and oceanic variability on a **fine-scale**, without resort to traditional techniques.

Generate a precise method to georeference and mosaic UAS captures

Derive more accurate R_{rs} retrievals

Georeferencing and mosaicking code

Georeferencing

Merging

 RGB Imagery collected with a DJI Zenmuse H20T sensor mounted on a DJI Matrice 300 RTK.

- 86% and 61% of water coverage recovered from S*f*M photogrammetry.
- Best georeferencing accuracies of < 5 m RMSE and < 3 m standard deviation.

Â.

Best practices for using the mosaicking code on multispectral imagery

Water quality outputs

CONFLOS SUPERIOR OF ENVERSION OF CONFINES OF CONFLOS SUPERIOR OF ENVERSION OF CONFLOS SUPERIOR OF ENVERSION OF CONFLOS SUPERIOR OF CONFLOS SUPERIO

Chl-a (Gitelson et al. 2007)

Impact on the field

• Base for the development of new versions that improve some of the caveats of the code.

Impact on the field

• Integration on DroneWQ package.

Data collection for validation and adaptation to new sensors.

Conclusions

1. The new georeferencing and mosaicking algorithm addresses the significant difficulties associated with UAV remote sensing over aquatic environments. It offers a solution that is open-source, transferable, and userfriendly, enhancing the detailed comprehension of finescale marine processes.

2. The developed processing approach for extracting Rrs from UAV-captured multispectral data should enhance previous techniques by considering the water surface's geometry to more effectively eliminate surface-reflected light from the measurements.

Novel Direct Georeferencing-Based Method for Accurate Water Surface Mosaicking with drone multispectral Imagery Thank you!

Dr. Alejandro Román