





### The workshop will begin in a few minutes.

To help keep the session structured and smooth, we kindly ask that you:

- Mute your microphones during presentations
- If you have questions, post them in the chat and tag the presenter using @
- Turn on your camera when speaking

Active participation in a respect way is encouraged.



Welcome to the second FRM4Drones -AQUA Workshop









### **Practical Info & House Rules**

- The session is being recorded for internal use only it will not be distributed
- Questions during presentations ?
  - → Use the chat presenters will answer there
- After the presentations:
  - → Interactive session with polls and open discussion
  - → Use the "Raise Hand" function to speak
  - → Please mute your microphone when not speaking
  - → Use your camera when speaking, if possible
- We encourage active participation!

### Have a great meeting!







### **Workshop Agenda**

- Welcome & Round-the-table 5 min
- FRM4Drones-AQUA- Principles of Fiducial Reference Measurement (FRM) 20 min
- Expert Presentations 60 min
- Polls & Questionnaires 10-15 min
- Feedback Poll & Open Discussion 20 min as needed







### Welcome – Workshop objectives

- Share expertise on drone-based aquatic reflectance and Cal/Val
- Identify needs and user practices
- Shape the roadmap towards Fiducial Reference Measurements (FRM) from drones for aquatic Cal/Val

1st WS on data acquisition & processing protocol (held in June 2025)

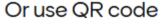
FRM4DRONES-AQUATIC | VITO Remote Sensing

2nd WS on Uncertainty & Traceability








### Let's Get to Know the Audience

No round-the-table – instead, live poll questions

### Options to join:

- 1) Link to poll in chat
- 2) Scan QR code with mobile
- 3) Go to: menti.com; Code: 4523 0550











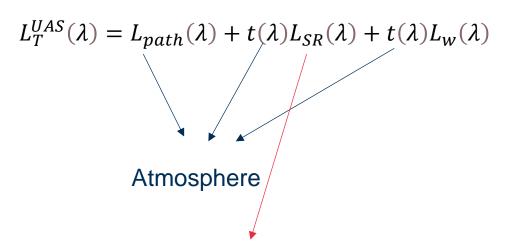
### FRM4drones - challenges











#### What we need:



The remote-sensing reflectance  $R_{rs}(\theta, \phi, \lambda) = \frac{L_w(\theta, \phi, \lambda)}{E_d(\lambda)}$ 

The aquatic reflectance  $R_w(\lambda) = \pi.R_{rs}(\lambda) = \pi.\frac{L_w(\lambda)}{E_d(\lambda)}$ 

#### What UAV measures:



Surface (sky glint, sun glint, white caps)

$$L_{SR}(\lambda) = L_{skyG}(\lambda) + L_{sunG}(\lambda) + L_{WF}(\lambda)$$











#### fiducial

UK: /fr'dju:[rəl/ US: (fi doo'shəl, -dyoo'-)

in Spanish | in French | in Italian | English synonyms | English Usage | Conjugator | in context | images

WordReference Random House Unabridged Dictionary of American English © 2024

**fi•du•cial** (fi doo'shəl, -dyoo'-), adj.

- 1. accepted as a fixed basis of reference or comparison: a fiducial point; a fiducial temperature.
- based on or having trust: fiducial dependence upon God.

#### **Etymology**

- → Late Latin fīdūciālis, equivalent. to fīdūci(a) trust (akin to fīdere to trust) + ālis -AL<sup>1</sup>
  - → 1565–75

https://www.wordreference.com/definition/fiducial







# FRM the beginning



"The suite of independent ground measurements that provide the maximum Return On Investment (ROI) for a satellite mission by delivering, to users, the required confidence in data products, in the form of independent validation results and satellite measurement uncertainty estimation, over the entire end-to-end duration of a satellite mission."

Donlon, C.; Goryl, P. Fiducial Reference Measurements (FRM) for Sentinel-3. In Proceedings of the Sentinel-3 Validation Team (S3VT) Meeting, ESA/ESRIN, Frascati, Italy, 26–29 November 2013





#### FRM4DRONES-AQUA

Towards FRM drone data for satellite aquatic reflectance Cal/Val



fiducial reference measurements for fluorescence









### FRM4 projects



A number of projects have been initiated for FRMs qualification.

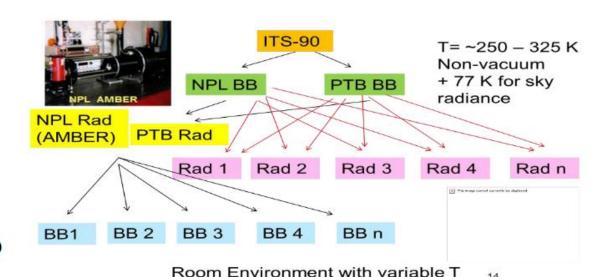
Based on generic model:

#### **Laboratory**

**Laboratory Calibration Exercise (LCE)** →

SI traceability

Necessary for all participants to assess biases to SI under Laboratory conditions


#### **Protocols definition**

#### Field campaigns

Field Inter- comparison Calibration Exercise (FICE)

#### **Analysis**

Analysis Discussion, Workshop **Publications** 





JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

#### The Miami2001 Infrared Radiometer Calibration and Intercomparison. Part II Shipboard Results

J. BAILTON,\* P. J. MINNETT, \* K. A. MAILLET, \* C. J. DONLON, S. J. HOOK, @ A. T. JESSUP, A.

rived 27 August 2002, in limit form 6 May 2005

Slide 12





### **CEOS FRM**



Goryl et al. 2023

Fiducial Reference Measurements (FRMs): What Are They?

DOI: 10.3390/rs15205017

Fiducial Reference Measurements (FRM) are a suite of independent, fully characterised, and traceable (to a community agreed reference ideally SI) measurements, tailored specifically to address the calibration and validation needs of a class of satellite borne sensor and that follow the guidelines outlined by the GEO/CEOS Quality Assurance framework for Earth Observation (QA4EO).







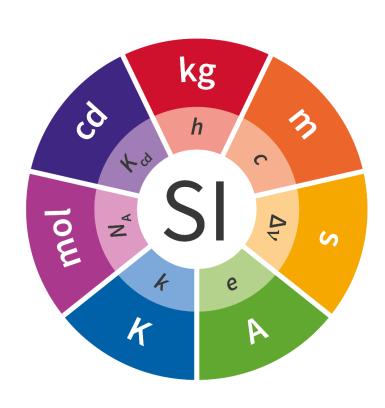
# **CEOS-FRM Maturity Matrix**

Not Assessable

Basic Good

Excellent

Ideal




| Self-assessment                  |                    |                          |                                                       |                               |                                        | Independent assessor              |
|----------------------------------|--------------------|--------------------------|-------------------------------------------------------|-------------------------------|----------------------------------------|-----------------------------------|
| Nature of FRM                    | FRM I              | nstrumentation           | Operations/ sampling                                  | Data                          | Metrology                              | Verification                      |
| Descriptor                       |                    | nstrument<br>cumentation | Automation level                                      | Data completeness             | Uncertainty<br>Characterisation        | Guidelines adherence              |
| Location/ availability<br>of FRM |                    |                          | Measurand sampling                                    | Availability and<br>Usability | Traceability<br>Documentation          | Utilisation/Feedback              |
| Range of sensors                 | Maintenance plan   |                          | ATBDs on processing/software                          | Data Format                   | Comparison/calibration<br>of FRM       | Metrology verification            |
| Complementary observations       | Operator expertise |                          | Guidelines on<br>transformation to<br>satellite Pixel | Ancillary Data                | Adequacy for intended class of sensors | Independent<br><u>Verificaton</u> |
|                                  |                    |                          | Grade  Tot Assessed                                   | 1                             | FRM CLASSIFICATION                     | ABCD (to be selected)             |

#### Framework document:

CEOS-FRM\_Assessment\_Framework\_V1

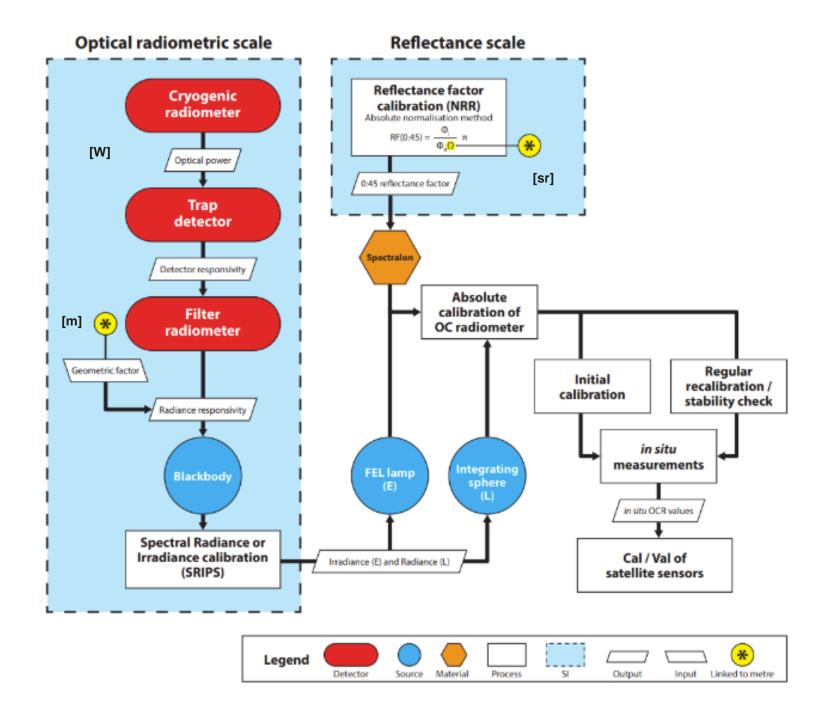
### **SI: Summary**



- Identical worldwide
- Century-long stability
- Absolute accuracy



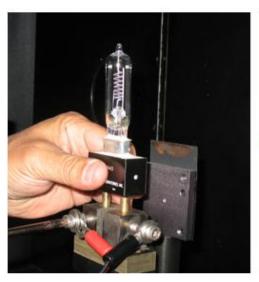
### Achieved through:


- Traceability
- Uncertainty Analysis
- Comparison

From 20 May 2019 all SI units are defined in terms of constants that describe the natural world. This assures the future stability of the SI and opens the opportunity for the use of new technologies, including quantum technologies, to implement the definitions.

### **SI Traceability**




 $W = kg m^2 s^{-3}$ .

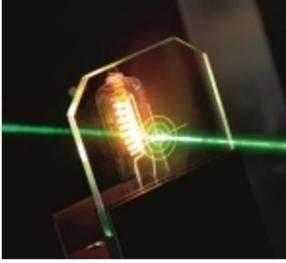


### **Irradiance standards**

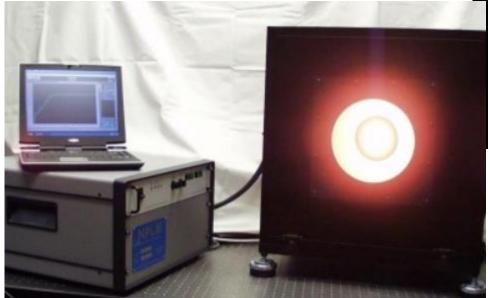


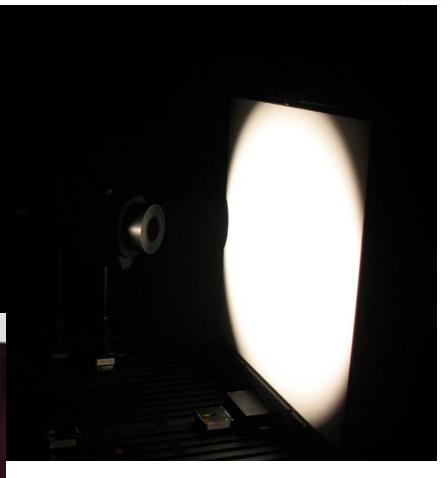
Lamps tungsten-halogen lamp (FEL) 1 kW (~ 3000 K)





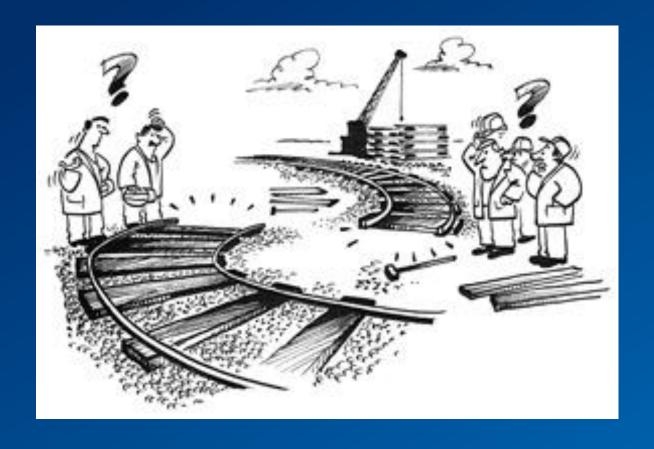




Photo courtesy of Gamma Scientific


### **Radiance standards**



Lamp –reflectance standard


Integrating sphere











# Relevance of comparisons



# Intercomparion /comparison



Obligatory for NMI to:

 To establish the degree of equivalence between the realisation of the scales and measurements using them

To validate uncertainty evaluation

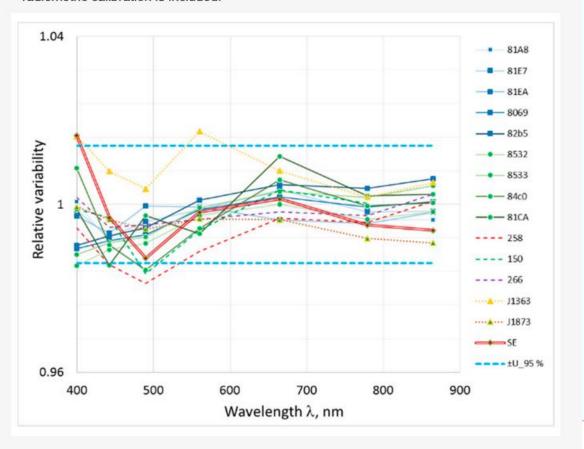
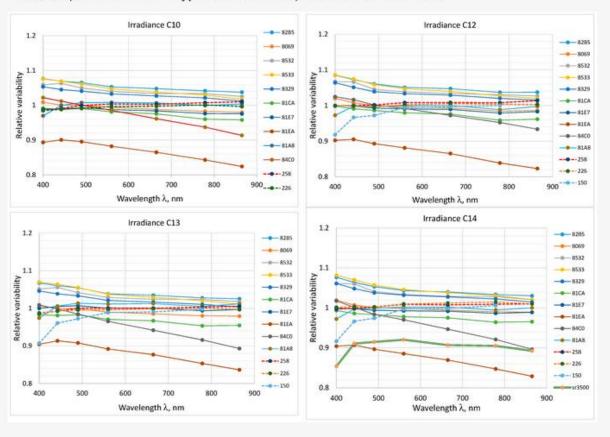


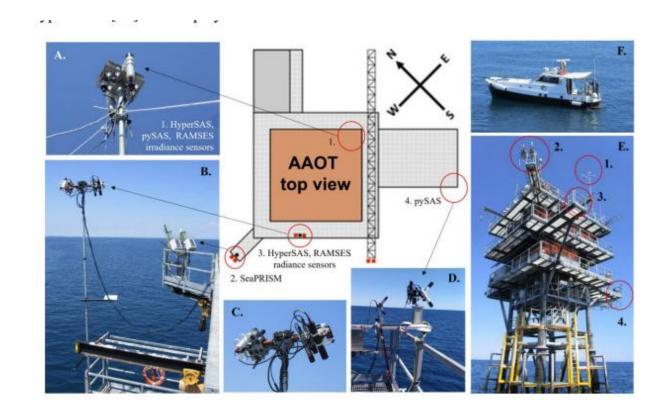




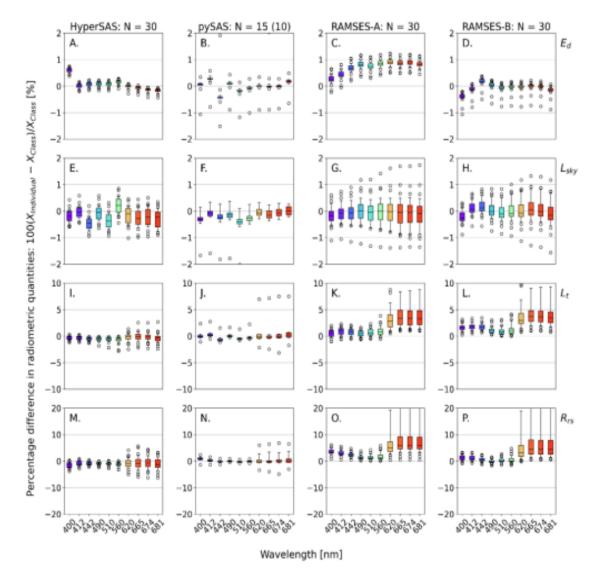


Figure 8. Irradiance sensors; agreement with reference values of the filter radiometer. Blue dashed lines—expanded uncertainty covering 95% of all data points. Uncertainty of radiometric calibration is included.



Figure 10. Irradiance sensors compared to the consensus value. Solid lines—RAMSES sensors; dashed lines—HyperOCR sensors; double line—SR-3500.




Vabson at al. 2019a, <a href="https://doi.org/10.3390/rs11091101">https://doi.org/10.3390/rs11091101</a> Vabson at al. 2019b, <a href="https://doi.org/10.3390/rs11091129">https://doi.org/10.3390/rs11091101</a> Vabson at al. 2019b, <a href="https://doi.org/10.3390/rs11091129">https://doi.org/10.3390/rs11091101</a>

### FRM4SOC FICE2022

Tilstone at al. 2025 DOI: https://doi.org/10.1364/OE.551042



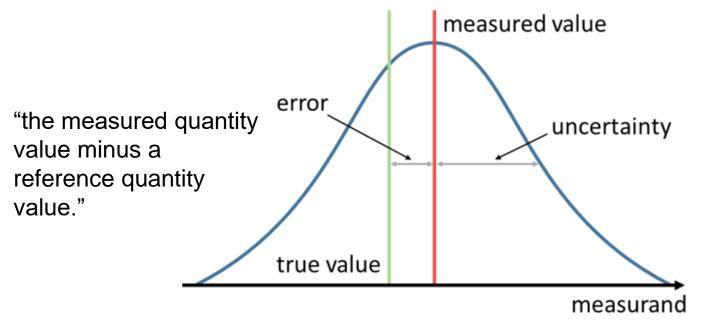




**Fig. 9.** Differences between individual processors and HyperCP for  $E_d(\lambda)$   $L_{sky}(\lambda)$ ,  $L_t(\lambda)$  and  $R_{rs}(\lambda)$  run in class-based mode for HyperSAS (A., E., I., M.), pySAS (B., F., J., N. RAMSES-A (C., G., K., O) and RAMSES-B (D., H., L., P.).











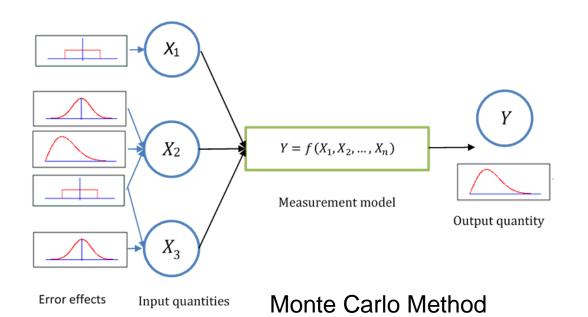

# Methodology and resources

The International Vocabulary of Metrology (VIM)



"a non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information used."




the intergovernmental organization through which Member States act together on matters related to measurement science and measurement standards.





# Methodology and resources

 the Guide to the expression of Uncertainty in Measurement (GUM) and its supplements



$$u^{2}(y) = \sum_{i=1}^{N} c_{i}^{2} u^{2}(x_{i}) + 2 \sum_{i=1}^{N-1} \sum_{j=i}^{N} c_{i} c_{j} u(x_{i}, x_{j}),$$

The Law of Propagation of Uncertainties



the intergovernmental organization through which Member States act together on matters related to measurement science and measurement standards.



# QA4EO Home https://qa4eo.org/









Figure 2 An iterative framework for the CEOS Five Steps

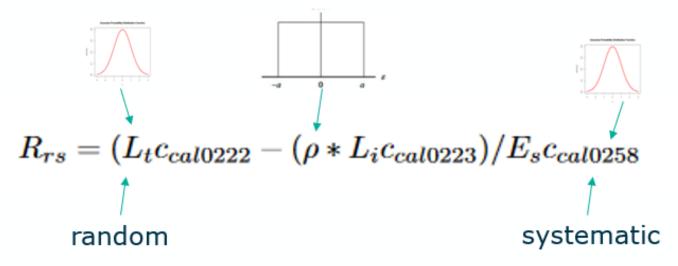




### CoMet Toolkit

The **CoMet Toolkit** (Community Metrology Toolkit) is an open-source software project to develop Python tools for the handling of error-covariance information in the analysis of measurement data.

```
import xarray as xr
import obsarray
from punpy import MeasurementFunction, MCPropagation
# read digital effects table
ds = xr.open_dataset("digital_effects_table_gaslaw_example.nc")
# Define your measurement function inside a subclass of MeasurementFunction
class IdealGasLaw(MeasurementFunction):
    def meas function(self, pres, temp, n):
       return (n *temp * 8.134)/pres
# Create Monte Carlo Propagation object, and create MeasurementFunction class
# object with required parameters such as names of input quantites in ds
prop = MCPropagation(10000)
gl = IdealGasLaw(prop, xvariables=["pressure", "temperature", "n moles"],
                yvariable="volume", yunit="m^3")
# propagate the uncertainties on the input quantites in ds to the measurand
# uncertainties in ds y (propagate ds returns random, systematic and structured)
ds y = gl.propagate ds(ds, store unc percent=True)
```





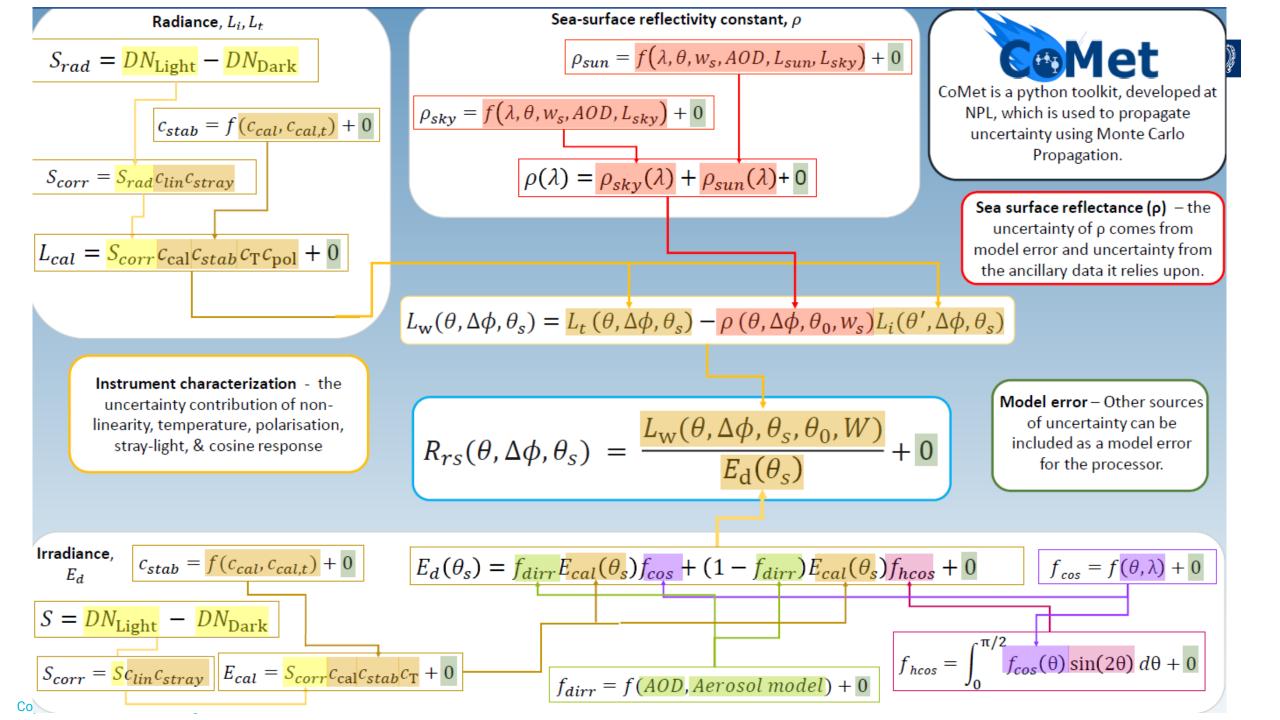



# **GUM Methodology applied in CoMET tool**





$$u_c^2(y) = \sum_{i=1}^N c_i^2 u^2(x_i) + 2 \sum_{i=1}^{N-1} \sum_{j=1+1}^N c_i c_j u(x_i) u(x_j) r(x_i, x_j),$$


| $L_t$ | $c_{c2}$ | $\rho$ | $L_i$ | $c_{c3}$ | $E_s$ | $c_{c8}$ |
|-------|----------|--------|-------|----------|-------|----------|
| 1     | 0        | 0      | 0     | 0        | 0     | 0        |
| 0     | 1        | 0      | 0     | 1        | 0     | 1        |
| 0     | 0        | 1      | 0     | 0        | 0     | 0        |
| 0     | 0        | 0      | 1     | 0        | 0     | 0        |
| 0     | 1        | 0      | 0     | 1        | 0     | 1        |
| 0     | 0        | 0      | 0     | 0        | 1     | 0        |
| 0     | 1        | 0      | 0     | 1        | 0     | 1        |

JCGM100:2008. Evaluation of measurement data - Guide to the expression of uncertainty in measurement

JCGM101:2008. Evaluation of measurement data - Supplement 1 to the Guide to the expression of uncertainty in measurement - Propagation of distributions using a Monte Carlo method.







## **Approach**



Table 3. Summary information about each uncertainty component values for class-based approach (blue branch, Fig. 5)

| Variable symbol                                                                                                                                | Variable<br>name/description                                              | Exemplary uncertainty magnitude for class-based characterisation                                                                                 |                                                                                         | PDF<br>shape | Correlation | Correlation between 'corr_between'  |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------|-------------|-------------------------------------|
|                                                                                                                                                |                                                                           | TRIOS                                                                                                                                            | HyperOCR                                                                                |              |             |                                     |
| $ \begin{pmatrix} DN_{\text{light},L_X} - DN_{dark,L_X} \end{pmatrix} \\ \begin{pmatrix} DN_{\text{light},E_S} - DN_{dark,E_S} \end{pmatrix} $ | Mean value of DNs<br>measured by a single<br>instrument at a<br>"station" | Standard deviation calculated per<br>measurement from data statistics                                                                            |                                                                                         | Normal       | Random      | N/A                                 |
| $c_{ m cal}$                                                                                                                                   | Absolute radiometric calibration                                          | Uncertainty values from calibration certificate divided by 2 to convert them back into standard uncertainty, k=1                                 |                                                                                         | Normal       | Systematic  | Between all three instruments       |
| c <sub>stab</sub>                                                                                                                              | Absolute calibration stability                                            | 1%                                                                                                                                               |                                                                                         | Rectangular  | Systematic  | N/A                                 |
| $c_{ m lin}$                                                                                                                                   | Detector non-linearity                                                    | 2%                                                                                                                                               |                                                                                         | Normal       | Systematic  | Between all three instruments       |
| C <sub>stray</sub>                                                                                                                             | Spectral stray light                                                      | Vary spectrally and per instrument due to<br>difference in spectral shape of the signal,<br>should come from the class-based stray light<br>file |                                                                                         | Normal       | Systematic  | Between all three instruments       |
| $c_T$                                                                                                                                          | Temperature sensitivity                                                   | Vary spectrally come from the class-based<br>temperature sensitivity file                                                                        |                                                                                         | Normal       | Systematic  | Between all three instruments       |
| $c_{ m pol}$                                                                                                                                   | Polarisation sensitivity<br>(Radiance only)                               | Vary spectrally and<br>per instrument to use<br>published data from<br>(Talone and Zibordi,<br>2016)                                             | Vary spectrally and<br>per instrument triple<br>values for TRIOS, as<br>shown in [AD-1] | Normal       | Systematic  | Between two radiance<br>instruments |
| $c_{cos}$                                                                                                                                      | Cosine response<br>(Irradiance only)                                      | Directional 3.5%                                                                                                                                 | Directional 2%                                                                          | Normal       | Systematic  | N/A                                 |

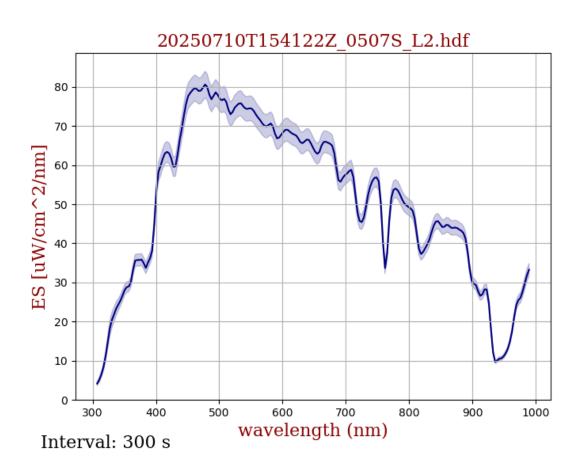


### **Approach**

Table 3. Summary information about each uncertainty component for sea surface reflectance factor  $(\rho)$  estimation using Mobley method to estimate the sea-surface reflectance factor  $(\rho)$ .

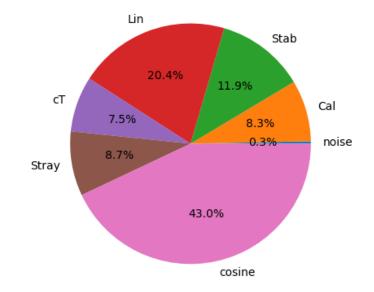
| +   |
|-----|
| +++ |
|     |

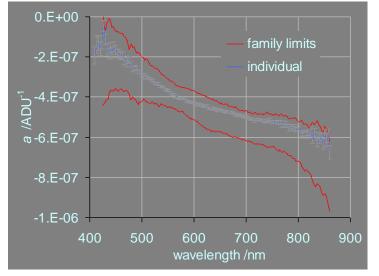
| Variable<br>symbol | Variable<br>name/description | Exemplary<br>uncertainty<br>magnitude                                           | PDF shape   | Correlation<br>'corr_x' | Correlation<br>between<br>'corr_between' |
|--------------------|------------------------------|---------------------------------------------------------------------------------|-------------|-------------------------|------------------------------------------|
| ρ                  | Sea surface<br>reflectance   | Calculated for each cast depends on all input components, especially wind speed | Normal      | Random                  | N/A                                      |
| $W_{s}$            | Wind speed                   | 2 ms <sup>-1</sup>                                                              | Normal      | Random                  | N/A                                      |
| $\Delta \phi$      | Relative azimuth             | 3°                                                                              | Normal      | Random <sup>1</sup>     | N/A                                      |
| $\theta_s$         | Solar zenith angle           | 0.5°                                                                            | Normal      | Random                  | N/A                                      |
| +0                 | Model error                  | Difference between<br>Mobley and Zhang<br>method                                | Rectangular | Systematic              | N/A                                      |

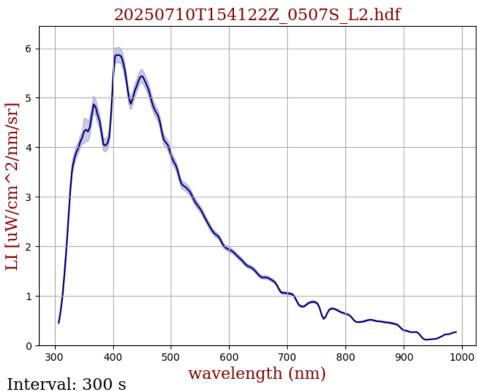



ES Class Based Uncertainty Components at 441.86nm

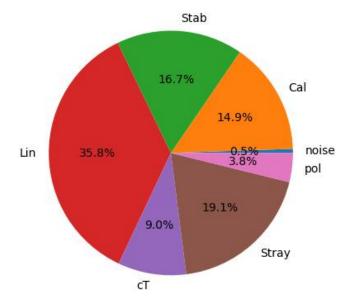
Lin



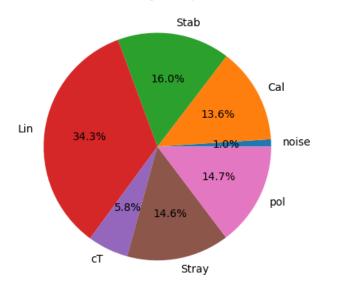


/wind\_speed=4.29 SZA =59.5




CT 19.4% 11.3% Cal 8.0% 0.3% noise cosine


ES Class Based Uncertainty Components at 675.46nm



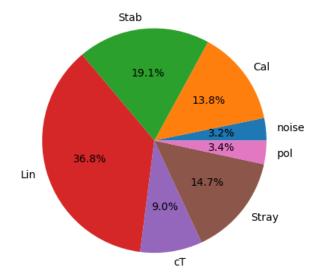




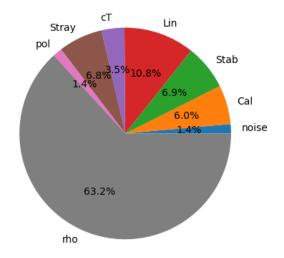

LI Class Based Uncertainty Components at 441.86nm



LI Class Based Uncertainty Components at 675.46nm




Interval: 300 s



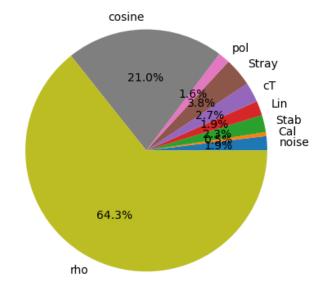

20250710T154122Z 0507S L2.hdf 0.8 LT (LW dash) [uW/cm^2/nm/sr] 300 400 500 600 700 800 900 1000 wavelength (nm)

LT Class Based Uncertainty Components at 441.86nm

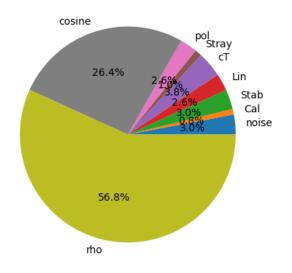


Lw Class Based Uncertainty Components at 441.86nm




Interval: 300 s




### 20250710T154122Z\_0507S\_L2.hdf 0.008 0.006 Rrs [1/sr] 0.004 0.002 0.000 400 600 700 800

wavelength (nm)

Rrs Class Based Uncertainty Components at 441.86nm



#### Rrs Class Based Uncertainty Components at 675.46nm





### Let's Get to Know the Audience

No round-the-table – instead, live poll questions

### Options to join:

- 1) Link to poll in chat
- 2) Scan QR code with mobile
- 3) Go to: menti.com; Code: 4523 0550









